INTERPOLATION THEOREMS FOR THE PAIRS OF SPACES (L^p, L^∞) AND $(L^1, L^q)^{(1)}$

BY GEORGE G. LORENTZ AND TETSUYA SHIMOGAKI

Abstract. A Banach space Z has the interpolation property with respect to the pair (X, Y) if each T, which is a bounded linear operator from X to X and from Y to Y, can be extended to a bounded linear operator from Z to Z. If $X=L^p$, $Y=L^\infty$ we give a necessary and sufficient condition for a Banach function space Z on (0, I), $0 < I \le +\infty$, to have this property. The condition is that $g < p^f$ and $f \in Z$ should imply $g \in Z$; here $g < p^f$ means that $g^{*p} < f^{*p}$ in the Hardy-Littlewood-Pólya sense, while h^* denotes the decreasing rearrangement of the function |h|.

If the norms $||T||_X$, $||T||_Y$ are given, we can estimate $||T||_Z$. However, there is a gap between the necessary and the sufficient conditions, consisting of an unknown factor not exceeding λ_p , $\lambda_p \le 2^{1/q}$, 1/p + 1/q = 1.

Similar results hold if $X=L^1$, $Y=L^q$. For all these theorems, the complete continuity of T on Z is assured if T has this property on X or on Y, and if Z satisfies a certain additional necessary and sufficient condition, expressed in terms of $\|\sigma_a\|_Z$, a>0, where σ_a is the compression operator $\sigma_a f(t)=f(at)$, $0 \le t < l$.

- 1. Introduction. Let X, Y and Z be Banach spaces, and let $\mathscr{B}(X)$ denote the totality of bounded linear operators acting on X, let $\mathscr{B}(X, Y) = \mathscr{B}(X) \cap \mathscr{B}(Y)$. Also, let $\mathscr{B}(X, Y; K_1, K_2)$ denote the set of all operators in $\mathscr{B}(X, Y)$ satisfying $||T||_X \leq K_1$ and $||T||_Y \leq K_2$. The space Z is said to have the interpolation property for the pair (X, Y), if for every $T \in \mathscr{B}(X, Y)$, T (or its unique extension \hat{T} to Z) belongs to $\mathscr{B}(Z)$. The space Z has the interpolation property for the pair (X, Y) in the strong sense, if T has the interpolation property for (X, Y) and if $||T||_Z$ (or $||\hat{T}||_Z$) is majorized by a positive constant depending only on $||T||_X$ and $||T||_Y$. In the sequel, I=(0, l) will be a (finite or infinite) interval of the real line, and $(X, ||\cdot||_X)$ will be a Banach function space of locally Lebesgue integrable functions on I satisfying the following conditions:
 - (1.1) $|g| \le |f|, f \in X \text{ implies } g \in X \text{ and } ||g||_X \le ||f||_X;$
 - (1.2) The norm $\|\cdot\|_X$ is semicontinuous:

$$0 \leq f_n \uparrow f, \ \alpha = \sup_{n \geq 1} \|f_n\|_X < \infty \ imply \ f = \bigcup_{n=1}^{\infty} f_n \in X \ and \ \|f\|_X = \alpha.$$

Received by the editors July 13, 1970 and, in revised form, September 21, 1970.

AMS 1970 subject classifications. Primary 46A30.

Key words and phrases. Interpolation property, interpolation theorem, quasi-order, rearrangement invariant Banach function space, space monotone with respect to a quasi-order, completely continuous operator, compression operator, Orlicz space.

⁽¹⁾ This work has been supported, in part, by grant no. GP-23566 of the National Science Foundation.

For a positive measurable function f, $d_f(y) = m[t:f(t) > y]$, $y \ge 0$, is the distribution function of f. Two positive functions f, g are equimeasurable, $f \sim g$, if they have the same distribution function. The space X is called weakly rearrangement invariant (rearrangement invariant), if $0 \le f \in X$ and $f \sim g$ imply $g \in X$ (resp. $\|g\|_X \le \gamma \|f\|_X$, where γ is a fixed constant independent upon f and g). We write L^p for $L^p(I)$, $1 \le p \le \infty$, and $\|\cdot\|_p$ for the L^p -norm on I. In his paper [2] A. P. Calderón showed that X has the interpolation property for the pair (L^1, L^∞) if and only if X is rearrangement invariant. In §3 and §4 we shall study the interpolation property for the pairs (L^p, L^∞) , $1 \le p < \infty$, and (L^1, L^q) , $1 < q < \infty$, respectively. We characterize the Banach function spaces having the interpolation property for these pairs (Theorems 2 and 3), extending the results of [2], [11]. In §5 the complete continuity of operators acting on interpolated spaces will be dealt with. Results similar to those of [14] will be obtained, and a special case when X is an Orlicz space will be discussed in the last section.

Let X and Y be Banach function spaces consisting of locally integrable functions. By X+Y we denote the set of all functions f of the form $f=f_1+f_2$, where $f_1 \in X$ and $f_2 \in Y$. If $Z \subseteq X+Y$, then each operator $T \in \mathcal{B}(X,Y)$ has a natural extension onto Z. For $f \in Z$, we write $f=f_1+f_2$, and define $Tf=Tf_1+Tf_2$. Since T is linear, the value of Tf does not depend on the choice of f_1 and f_2 . An extension of T in this sense will be again denoted by T.

2. Quasi-orders. For a measurable function f on I(0, l), f^* will denote the decreasing rearrangement of |f|, that is, the inverse function of $d_{|f|}(y)$, whenever it is finite. By S we denote the set of all positive simple functions, vanishing outside of a set of finite measure. It is easy to see that f^* is defined if f is locally integrable.

The main tool of this paper is different quasi-order relations between measurable functions f, g. One of them is the Hardy-Littlewood-Pólya relation g < f for locally integrable f, g, which means that

Although this relation is classical, some new properties of it were found in [10]. Here is a further property:

THEOREM 1. Let $g_1 + g_2 < f$, all these functions being locally integrable and positive. Then there exist positive f_1 , f_2 for which $f = f_1 + f_2$, $g_i < f_i$, i = 1, 2.

LEMMA 1. Let g < f, where g, f are positive and g a decreasing function in S:

$$g = \sum_{\nu=1}^n \alpha_{\nu} \chi_{(c_{\nu-1}, c_{\nu})}, \qquad 0 = c_0 < \cdots < c_n \leq l, \quad \alpha_1 \geq \cdots \geq \alpha_n \geq 0.$$

Then there exist mutually disjoint sets e_{ν} , $\nu = 1, ..., n$, with the following properties:

$$(2.2) me_{\nu} = c_{\nu} - c_{\nu-1},$$

$$\alpha_{\nu} m e_{\nu} \leq \int f \chi_{e_{\nu}} dt.$$

Proof. First we assume that f is decreasing. In this case, we shall also have the following:

(2.4) Each set e, is a finite union of intervals.

For n=1 the assertion holds trivially. Suppose that it holds for n=k. Let n=k+1. Putting

$$a = \sup \left\{ c : \int_{c}^{c+c_1} f \, dt \ge \alpha_1 c_1, c \le c_n - c_1 \right\},\,$$

we have $\int_a^{a+c_1} f dt = \alpha_1 c_1$, unless $a = c_n - c_1$. Let $\tau_c h$ denote the translation operator, defined by

$$\tau_c h(t) = h(t+c)$$
 if $t+c \in I$,
= 0 otherwise.

We put

$$f_1 = (f\chi_{(0,a)} + f\chi_{(a+c_1,l)})^* = f\chi_{(0,a)} + \tau_{c_1}(f\chi_{(a+c_1,l)}),$$

$$g_1 = \tau_{c_1}\left(\sum_{\nu=2}^n \alpha_{\nu}\chi_{(c_{\nu-1},c_{\nu})}\right) = \sum_{\nu=2}^n \alpha_{\nu}\chi_{(c_{\nu-1}-c_1,c_{\nu}-c_1)}.$$

We can exclude the possibility that $a=c_n-c_1$, for then $g_1(t) \le f_1(t)$ for all t. Since

$$\int_{0}^{x} g_{1} dt \leq \int_{0}^{x} g dt \leq \int_{0}^{x} f dt = \int_{0}^{x} f_{1} dt \quad \text{if } 0 < x \leq a,$$

$$\int_{0}^{x} g_{1} dt = \int_{0}^{c_{1}+x} g dt - \alpha_{1} c_{1} \leq \int_{a}^{c_{1}+x} f dt - \int_{a}^{a+c_{1}} f dt$$

$$= \int_{0}^{x} f_{1} dt \quad \text{if } a < x \leq l,$$

we see that $g_1 \prec f_1$. By the assumption, there exist mutually disjoint sets \tilde{e}_{ν} , $2 \leq \nu \leq k+1$, such that (2.2)–(2.4) hold for f_1 and g_1 . Setting $e_1 = (a, a+c_1)$ and $e_{\nu} = \{\tilde{e}_{\nu} \cap (0, a)\} \cup \{t : t-c_1 \in \tilde{e}_{\nu} \cap (a, l)\}, 2 \leq \nu \leq k+1$, we obtain mutually disjoint sets e_{ν} , $1 \leq \nu \leq k+1$, for which all the required conditions hold for f and g.

If f is positive but not decreasing, then, since $g < f^*$, we can find mutually disjoint measurable sets e_v , $1 \le v \le n$, such that (2.2)–(2.4) hold for g and f^* . As each e_v is a finite sum of intervals, we can easily find mutually disjoint sets \tilde{e}_v , $1 \le v \le n$, such that $m\tilde{e}_v = me_v$ and $\int f\chi_{\tilde{e}_v} dt = \alpha_v me_v$. Measurable sets \tilde{e}_v , $1 \le v \le n$, thus obtained, satisfy the requirements of Lemma 1.

We can now prove Theorem 1 when g_1 and g_2 , and consequently $g=g_1+g_2$ belong to S. Let e_{ν} , $\nu=1,\ldots,n$, be sets of constancy of each of the three functions, with $g_1=\alpha_{\nu 1}$, $g_2=\alpha_{\nu 2}$ on e_{ν} . By means of the decreasing rearrangement of g and Lemma 1, we find disjoint sets \tilde{e}_{ν} with $m\tilde{e}_{\nu}=me_{\nu}$, $\int_{\tilde{e}_{\nu}}f\ dt \geq (\alpha_{\nu 1}+\alpha_{\nu 2})me_{\nu}$. Then it is possible to decompose each \tilde{e}_{ν} into disjoint $\tilde{e}_{\nu 1}$, $\tilde{e}_{\nu 2}$ such that $\int_{\tilde{e}_{\nu 1}}f\ dt \geq \alpha_{\nu 1}me_{\nu}$, i=1,2. We shall have $f\chi_{\tilde{e}_{\nu 1}} > g_1\chi_{e_{\nu}}$, $i=1,2,\nu=1,\ldots,n$. Adding these relations, we obtain $g_i < f_i = \sum_{\nu=1}^n f\chi_{\tilde{e}_{\nu 1}}$, $f_1+f_2 \leq f$. It is now sufficient to replace f_2 by $f-f_1$ to obtain the result.

If g_1 , g_2 are arbitrary positive functions, one finds increasing sequences $g_{1n} \uparrow g_1$, $g_{2n} \uparrow g_2$ from S. For the corresponding f_{1n} , f_{2n} one can use weak *-compactness on each set A where f is bounded, and the absolute continuity of the integrals $\int_e f dt$ to complete the proof.

REMARK. It is not difficult to show that the functions f_1, f_2 of Theorem 1 can be always assumed to be orthogonal (that is, with disjoint supports). However, one cannot, in general, assume that they are decreasing, even if g_1, g_2 and f are decreasing step functions with just one step.

In [10] another quasi-order $g \leftarrow f$ has been used. With respect to two Banach function spaces this relation means the following. One must have $g, f \in X_1 + X_2$, and for each decomposition $f = f_1 + f_2$, $f_i \in X_i$, i = 1, 2 of f there should exist a decomposition $g = g_1 + g_2$ of $g, g_i \in X_i$, i = 1, 2, with the property that $||g_i||_{X_i} \le ||f_i||_{X_i}$, i = 1, 2. We are interested here in the case $X_1 = L^p$, $X_2 = L^\infty$. Then it is easy to see (compare also [10, p. 38]) that $g \leftarrow f$ holds if and only if

The quasi-order used in this paper, $g <^p f$, where $p \ge 1$, is defined, for two locally p-integrable functions, by the inequality

that is, by $g^{*p} < f^{*p}$. If one writes (2.6) as $||g^*\chi_{(0,x)}||_p \le ||f^*\chi_{(0,x)}||_p$, there is an obvious similarity to (2.5).

From the definition we see that

$$(2.7) g <^p f is equivalent to g^* <^p f^*.$$

By a theorem of Hardy, Littlewood and Pólya, [3], $g <^p f$ implies $\Phi(|g|) < \Phi(|f|)$, where $\Phi(u)$, $u \ge 0$, is convex and increasing. In particular,

$$(2.8) g < f implies g <^p f.$$

We also have

(2.9)
$$g_i \prec^p f, i = 1, 2, a_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1 \text{ imply } \alpha_1 g_1 + \alpha_2 g_2 \prec^p f.$$

In fact, for $x \in I$ we have, because of the inequality $(f_1 + f_2)^* \prec f_1^* + f_2^*$ and (2.8),

$$\int_0^x (\alpha_1 g_1 + \alpha_2 g_2)^{*p} dt \le \int_0^x (\alpha_1 g_1^* + \alpha_2 g_2^*)^p dt$$

$$\le \alpha_1 \int_0^x g_1^{*p} dt + \alpha_2 \int_0^x g_2^{*p} dt \le \int_0^x f^{*p} dt.$$

LEMMA 2. (i) Relation $g \prec^p f$ implies $g \prec f$; (ii) for each p > 1, there is a smallest constant λ_p , $1 < \lambda_p \le 2^{1/q} (1/p + 1/q = 1)$, for which $g \prec f$ implies $g \prec^p \lambda_p f$.

- **Proof.** (i) For a given $y \ge 0$, we consider the function $\Phi(u) = (u^{1/p} y)_+^p$, which is increasing and convex. Thus, by the theorem of Hardy, Littlewood and Pólya mentioned above $g <^p f$ implies $\Phi(g^{*p}) < \Phi(f^{*p})$; relation (2.5) follows from this.
- (ii) Assume $g \leftarrow f$. If $e_0 \subset I$ is a given set, with $me_0 = a > 0$, let $\alpha = f^*(a)$, and let $f_2 = f^{(\alpha)} \in L^{\infty}$ be the α -truncation of f, let $f_1 = f f^{(\alpha)} \in L^p$. There exist g_i , i = 1, 2, with $g = g_1 + g_2$, $||g_1||_p \le ||f f^{(\alpha)}||_p$, $||g_2||_{\infty} \le \alpha$. Let $e \subset I$, $me \le a$. Then

$$\|g\chi_e\|_p \leq \|g_1\chi_e\|_p + \|g_2\chi_e\|_p \leq \|g_1\|_p + \alpha a^{1/p} \leq \|f - f^{(\alpha)}\|_p + \|f^{(\alpha)}\chi_{e_0}\|_p \leq 2^{1/q} \|f\chi_{e_0}\|_p.$$

We have used here the fact that if $f_1, f_2 \ge 0$, then $||f_1||_p + ||f_2||_p \le 2^{1/q} ||f_1 + f_2||_p$. From (2.10) it follows that $g < {}^p 2^{1/q} f$. We leave to the reader the proof that $\lambda_p > 1$.

3. An interpolation theorem for the pair L^p , L^∞ . In this section we assume that X is a Banach function space satisfying $X \subset L^p + L^\infty$ for some p, $1 \le p < +\infty$. We shall say that X is monotone with respect to the relation \prec^p , or that X belongs to the class \mathcal{M}^p if $g \prec^p f$ and $f \in X$ imply $g \in X$. For A > 0, we shall say that $X \in \mathcal{M}^p(A)$ if $g \prec^p f$ and $f \in X$ imply $g \in X$ and $\|g\|_X \le A\|f\|_X$.

LEMMA 3. If $X \in \mathcal{M}^p$, then $X \in \mathcal{M}^p(A)$ for some A > 0; moreover, X is rearrangement invariant.

Proof. By (2.8) it is clear that X is weakly rearrangement invariant if $X \in \mathcal{M}^p$. Suppose that $\mathcal{M}^p(A)$ is violated for each A > 0. Then there exist positive functions $f_n, g_n, n = 1, 2, \ldots$, such that $g_n <^p f_n, \|g_n\|_X \ge n$ and $\|f_n\|_X \le 2^{-2n}$. Putting $f = \sum_{n=1}^{\infty} 2^n f_n$, we have $f \in X$ and $2^n g_n <^p f_n$, $n \ge 1$. By (2.9) we get

$$g = \sum_{n=1}^{\infty} g_n = \sum_{n=1}^{\infty} 2^{-n} (2^n g_n) \prec^p f,$$

hence $g \in X$. This, however, contradicts the fact that $||g||_X \ge ||g_n||_X \ge n$ for all $n \ge 1$. Thus, the condition $\mathcal{M}^p(A)$ holds for some A > 0, and X is necessarily rearrangement invariant.

(For p=1, Lemma 3 was given in [12], [16], but the present proof is simpler.)

A space $X \subset L^p$ is normally imbedded in L^p if X is dense in L^p and if $||f||_p \le ||f||_X$ for all $f \in X$. Each of the Lorentz spaces $\Lambda(C, p)$ [9] (where C is a class of decreasing positive functions c with $\int c \, dt = 1$) is normally imbedded in L^p and satisfies $\mathcal{M}^p(1)$. Here is an example in the opposite direction:

EXAMPLE 1. The space Λ_{α} , $\alpha = p^{-1}$, p > 1, with the norm $||f||_{\Lambda} = \alpha \int_0^1 t^{\alpha - 1} f^*(t) dt$, is normally imbedded in L^p . On the other hand, it does not satisfy \mathcal{M}^p . Indeed, let $\phi(t) = t^{-\alpha} \log^{-1}(1/t)$, $0 < t \le e^{-1}$; = 0, $e^{-1} < t < 1$. Then $\phi \in L^p$, but $\|\phi\|_{\Lambda} = +\infty$. We put, for $0 < a < e^{-1}$,

$$g_a(t) = \phi(a),$$
 $0 \le t \le a,$ $f_a(t) = \phi(a),$ $0 \le t \le b,$
= $\phi(t),$ $a \le t \le 1,$ = 0, $b \le t \le 1,$

selecting b in such a way that $||f_a||_p = ||g_a||_p$.

Then for each a, $g_a <^p f_a$, but $\|g_a\|_{\Lambda} \to \infty$, $\|f_a\|_{\Lambda} = \|f_a\|_p = \|g_a\|_p \to \|\phi\|_p$ for $a \to 0$. Lemma 3 shows that \mathcal{M}^p is violated.

LEMMA 4. Assume that $f_0, g_0, g_0 \in S$ are positive and that $g_0 \prec^p f_0$. Then there exists a positive operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$ with the property that $g_0 \subseteq Tf_0$.

Proof. Let g_0 be given by

$$(3.1) g_0 = \sum_{\nu=1}^n a_{\nu} \chi_{\tilde{e}_{\nu}}, \alpha_1 \geq \cdots \geq \alpha_n \geq 0, \ \tilde{e}_{\nu} \cap \tilde{e}_{\mu} = \emptyset, \nu \neq \mu.$$

By Lemma 1 (applied to g_0^{*p}) there exist disjoint subsets e_v , $v=1,\ldots,n$, of I for which $me_v=m\tilde{e}_v$ and

(3.2)
$$\int_0^l f_0^p \chi_{e_\nu} dt \ge \alpha_\nu^p m e_\nu, \qquad \nu = 1, \ldots, n.$$

We denote by h_{ν} positive functions with the properties that $||h_{\nu}||_q = 1$ (1/p + 1/q = 1) and

$$\langle f_0 \chi_{e_{\nu}}, h_{\nu} \rangle = \int_0^1 f_0 \chi_{e_{\nu}}(t) h_{\nu}(t) dt = \| f_0 \chi_{e_{\nu}} \|_p.$$

We define an operator T on the set of all locally p-integrable functions by

$$Tf = \sum_{\nu=1}^{n} \frac{\langle f \chi_{e_{\nu}}, h_{\nu} \rangle}{\|\chi_{e_{\nu}}\|_{p}} \chi_{\tilde{e}_{\nu}}.$$

Clearly T is positive and linear and

$$||Tf||_p^p \leq \sum_{n=1}^n ||f\chi_{e_n}||_p^p \leq ||f||_p^p$$

for all $f \in L^p$. On the other hand, for any $f \in L^{\infty}$,

$$|\langle f\chi_{e_{n}}, h_{\nu}\rangle| \leq ||f\chi_{e_{n}}||_{p} \leq ||f||_{\infty} ||\chi_{e_{n}}||_{p}, \qquad 1 \leq \nu \leq n.$$

Consequently, $T \in \mathcal{B}(L^p, L^{\infty}; 1, 1)$. Furthermore by (3.2),

$$Tf_0 = \sum_{\nu=1}^n \frac{\|f_0\chi_{e_\nu}\|_p}{\|\chi_{e_\nu}\|_p} \chi_{\tilde{e}_\nu} \geq \sum_{\nu=1}^n \alpha_\nu \chi_{\tilde{e}_\nu} = g_0.$$

Now we can prove

THEOREM 2. Let X be a Banach function space over I with $X \subseteq L^p + L^{\infty}$. The necessary and sufficient condition for X to have the interpolation property for the pair (L^p, L^{∞}) or, equivalently, this property in the strong sense for (L^p, L^{∞}) is that $X \in \mathcal{M}^p$.

Proof. First let $X \in \mathcal{M}^p$. By Lemma 3, $X \in \mathcal{M}^p(A)$ for some A > 0. Let $g, f \in X$ and $g \not\leftarrow f$ (with respect to L^p , L^∞). Then by Lemma 2, $g \prec^p \lambda_p f$, and so $\|g\|_X \le$

 $A\lambda_p || f ||_X$. Now if $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, then for each $f \in X$, $Tf \leftarrow f$. It follows that T maps X into itself and that $||T||_X \leq A\lambda_p$. And if $0 \neq T \in \mathcal{B}(L^p, L^\infty; K_p, K_\infty)$, then $\alpha T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, where $\alpha^{-1} = \operatorname{Max}(K_p, K_\infty)$. This shows that X has the interpolation property in the strong sense.

Conversely, suppose that X has the interpolation property for the pair (L^p, L^∞) , but fails to satisfy \mathcal{M}^p . Then there exist positive functions f and g such that $f \in X$, $||f||_X = 1$, $g <^p f$, but $g \notin X$. Let $0 \le g_n \in S$ and $g_n \uparrow g$. As $g_n <^p f$, there exist, by Lemma 4, positive operators $T_n \in \mathcal{B}(L^p, L^\infty; 1, 1)$ such that $g_n \le T_n f$ for each $n \ge 1$. This implies that $g_n \in X$ for each $n \ge 1$. Since $||\cdot||_X$ satisfies (1.2), $||g_n||_X \uparrow \infty$ holds. We may therefore assume without loss of generality that $||g_n||_X > n \cdot 2^n$, $n \ge 1$. It follows that $||T_n||_X \ge ||T_n f||_X > n \cdot 2^n$, $n \ge 1$. Putting $T = \sum_{n=1}^\infty 2^{-n} T_n$, we obtain a positive operator belonging to $\mathcal{B}(L^p, L^\infty; 1, 1)$. On the other hand, $||Tf||_X \ge ||2^{-n} T_n f||_X > n$ holds for each n, since T_n is a positive operator. This contradicts the fact that $Tf \in X$, and shows that the condition is necessary.

From the proof above, we have immediately

COROLLARY 1. If X satisfies the condition $\mathcal{M}^p(A)$ and $T \in \mathcal{B}(L^p, L^\infty; K_p, K_\infty)$, then

(3.3)
$$Tf \prec^p \lambda_p \operatorname{Max}(K_p, K_{\infty})f \text{ for each } f \in L^p;$$

$$||T||_X \leq A\lambda_p \operatorname{Max}(K_p, K_{\infty}).$$

In the last inequalities, $\lambda_p \le 2^{1/q} \le 2$. We shall show that λ_p cannot be here replaced by 1.

EXAMPLE 2. For each p, $1 , there exists an operator <math>T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, for which Tf < f is not true for some f.

Let $\alpha > 1$ be chosen so that $c = \frac{1}{2}(\alpha^{p-1} + 1)^p/(\alpha^p + 1)^{p-1} < 1$ (actually, this is true for any $\alpha > 1$). We define

$$f_0(x) = \alpha$$
 on $(0, \frac{1}{2})$, $g_0(x) = \beta$ on $(0, c)$,
= 1 on $(\frac{1}{2}, 1)$, = 0 on $(c, 1)$,

where $\beta = (\alpha^p + 1)/(\alpha^{p-1} + 1)$. An easy calculation shows that

$$||g_0||_p = ||f_0||_p,$$

$$||f_0^{p-1}||_1||g_0||_{\infty} = ||f_0||_p^p.$$

We define the positive operator

(3.7)
$$Tf = \frac{1}{\|f_0\|_p^p} \langle f, f_0^{p-1} \rangle g_0.$$

Since $||h^{p-1}||_q = ||h||_p^{p-1}$ for $h \ge 0$, it follows from (3.5) that, if $f \in L^p$,

$$||Tf||_p \le \frac{1}{||f_0||_p^p} ||f||_p ||f_0^{p-1}||_q ||g_0||_p = ||f||_p,$$

and from (3.6) that, if $f \in L^{\infty}$,

$$||Tf||_{\infty} \leq \frac{1}{||f_0||_p^p} ||f||_{\infty} ||f_0^{p-1}||_1 ||g_0||_{\infty} = ||f||_{\infty}.$$

Also, $Tf_0 = g_0$. However, $g_0 <^p f_0$ is incorrect, since

EXAMPLE 3. There exists a space $X \in \mathcal{M}^p(1)$, and an operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, for which $||T||_X > 1$.

In the notations of the last example, we take $X = L^p$ with the norm $||f||_X = ||f^*\chi_{(0,c)}||_p$. It is immediately clear that g < pf implies $||g||_X \le ||f||_X$, so that $X \in \mathcal{M}^p(1)$. For the operator (3.7) we have $g_0 = Tf_0$, but $||g_0||_X > ||f_0||_X > 0$ by (3.8).

If g = Tf and $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, then we have $g \prec f$. We shall show that the converse is not true, in general. This will also show that one cannot replace the relation \prec^p by \prec in Lemma 4.

EXAMPLE 4. Let p>1 be an integer, and let f_0 and g_0 be the functions of the Example 2. We put $f_1=f_0+1$ and $g_1=g_0+1$, where 1 denotes the characteristic function of (0, 1). Let

$$G(t) = \|f_0 + t\mathbf{1}\|_p^p - \|g_0 + t\mathbf{1}\|_p^p, \quad t \ge 0.$$

Using (3.5), (3.6) and elementary calculations (for instance, with induction in k) we can show that

$$G(0) = G'(0) = 0, \quad G^{(k)}(0) \ge 0, \qquad 2 \le k \le p.$$

It follows that $G(t) \ge 0$ for all $0 \le t \le 1$, hence we have $g_1 \leftarrow f_1$ on account of (2.5). Now suppose that there exists an operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$ such that $Tf_1 = g_1$. Since $||T1||_{\infty} \le 1$, we have $0 \le g_1 - 1 \le Tf_1 - T1$, hence

$$\|g_0\|_p = \|g_1 - 1\|_p \le \|Tf_1 - T1\|_p \le \|f_1 - 1\|_p = \|f_0\|_p.$$

From (3.5) it follows that $T\mathbf{1} = \mathbf{1}$ and $Tf_0 = g_0$. Since $\chi_{(1/2,1)} = (\alpha \mathbf{1} - f_0)/(\alpha - 1)$, we have

$$T\chi_{(1/2,1)} = (\alpha-1)^{-1}(\alpha \mathbf{1} - g_0).$$

The last function has values $\alpha/(\alpha-1)>1$ on the interval (c, 1), hence $||T\chi_{(1/2,1)}||_{\infty}>1$, a contradiction. Consequently, there does not exist an operator $T \in \mathcal{B}(L^p, L^{\infty}; 1, 1)$ with the property $Tf_1 = g_1$.

4. Interpolation theorems for the pair L^1 , L^q . In this section we assume that X is a Banach function space for which $X \subset L^1 + L^q$, $1 < q < +\infty$, and that p is the conjugate exponent, 1/p + 1/q = 1. We define a quasi-order relation \prec_q . We write $f_1 \prec_q f_2, f_1, f_2 \in L^q$, if there exists, for every $g_1 \in L^p$, a $g_2 \in L^p$ such that both $g_2 \prec^p g_1$ and $\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle$. For example, $0 \leq f_1 \leq f_2$ implies $f_1 \prec_q f_2$, for here we can take $g_2 = |g_1|$. We begin with some properties of the relation \prec_q . For given $f, g \geq 0$, there exists a $\tilde{g} \geq 0$ with the properties $g \sim \tilde{g}$ and $\langle f^*, g \rangle = \langle f, \tilde{g} \rangle$, [8, p. 61]. From this, using (2.7), it is not difficult to derive

$$(4.1) f_1 \prec_q f_2 \text{ if and only if } f_1^* \prec_q f_2^*.$$

If $f_1 \prec f_2$, then for each g_1 we have $\langle f_1^*, g_1 \rangle \leq \langle f_1^*, g_1^* \rangle \leq \langle f_2^*, g_1^* \rangle$. Hence, by (4.1),

$$(4.2) f_1 \prec f_2 implies f_1 \prec_q f_2.$$

Similar to (2.9) is the property

$$(4.3) f_1 \prec_a f, i = 1, 2, and \alpha_1, \alpha_2 \ge 0, \alpha_1 + \alpha_2 = 1 imply \alpha_1 f_1 + \alpha_2 f_2 \prec_a f.$$

In fact, for each $g \in L^p$, we can find g_1 and g_2 such that $g_i \prec^p g$ and $\langle f_i, g \rangle \leq \langle f, g_i \rangle$, i=1, 2. Hence,

$$\langle \alpha_1 f_1 + \alpha_2 f_2, g \rangle \leq \langle f, \alpha_1 g_1 \rangle + \langle f, \alpha_2 g_2 \rangle = \langle f, \alpha_1 g_1 + \alpha_2 g_2 \rangle,$$

where $\alpha_1 g_1 + \alpha_2 g_2 <^p g$ by (2.9). Since g is arbitrary, we get (4.3).

For a Banach function space X, X' will denote the *conjugate space of* X, that is, the space of all measurable functions g such that

$$||g||_{X'} = \sup\{|\langle f, g \rangle|; f \in X, ||f||_{X} \leq 1\} < \infty.$$

For any operator T acting on X, T' will denote the *conjugate operator* of T acting on the conjugate space X'. Note that $T \in \mathcal{B}(L^1, L^q; K_1, K_q)$ implies $T' \in \mathcal{B}(L^p, L^\infty; K_q, K_1)$.

LEMMA 5. If $T \in \mathcal{B}(L^1, L^q; 1, 1)$, then

$$(4.4) Tf \prec_{a} \lambda_{p} f for each f \in L^{q}.$$

Proof. We have $T' \in \mathcal{B}(L^p, L^\infty; 1, 1)$, hence $T'g \prec^p \lambda_p g$ holds for every $g \in L^p$, by (3.3). If $f \in L^q$ and $g_1 \in L^p$ are given, we select $g_2 = (1/\lambda_p)T'g_1$. Then $g_2 \prec^p g_1$ and $\langle Tf, g_1 \rangle = \langle f, T'g_1 \rangle = \langle \lambda_p f, g_2 \rangle$, and we have proven (4.4).

We shall use the following monotony conditions for a Banach function space X:

$$X \in \mathcal{M}_q$$
, if $g \prec_q f, f \in X$ imply $g \in X$;
 $X \in \mathcal{M}_q(A)$, if $g \prec_q f, f \in X$ imply $g \in X$ and $\|g\|_X \leq A\|f\|_X$.

With the same proof as for Lemma 3 we have

LEMMA 6. If $X \in \mathcal{M}_q$, then $X \in \mathcal{M}_q(A)$ for some A > 0; moreover, X is rearrangement invariant.

LEMMA 7. If the space X does not satisfy the condition $\mathcal{M}_q(A)$, then there exists a positive operator $T \in \mathcal{B}(L^1, L^q; 1, 1)$ and a function $0 \le f \in X$ for which $||Tf||_X > A||f||_X$.

Proof. We shall first show that under the assumptions of Lemma 7, the conjugate space X' of X does not satisfy $\mathcal{M}^p(A)$. There exist functions $f_1, f_2 \in X$ such that $f_1 \prec_q f_2$ and $||f_1||_X > A||f_2||_X$. For any $\varepsilon > 0$ satisfying $(1-\varepsilon)||f_1||_X > A||f_2||_X$, we can find, by virtue of the reflexivity of the semicontinuous norm $||\cdot||_X$, a function $g_1 \in X' \cap L^p$ such that $||g_1||_{X'} = 1$ and $(1-\varepsilon)||f_1||_X \le \langle f_1, g_1 \rangle$. Since $f_1 \prec_q f_2$, there exists a function $g_2 \in L^p$ for which $g_2 \prec^p g_1$ and $\langle f_1, g_1 \rangle \le \langle f_2, g_2 \rangle$. This implies

$$A\|f_2\|_X < (1-\varepsilon)\|f_1\|_X \le \|f_2\|_X \|g_2\|_{X'}.$$

Thus, we have obtained two functions $g_1, g_2 \in X'$, for which $g_2 <^p g_1$, but $||g_2||_{X'} > A ||g_1||_{X'}$, contradicting the condition $\mathcal{M}^p(A)$.

For g_1 and g_2 , obtained above, we may assume $g_1, g_2 \ge 0$. Since $\|\cdot\|_{X'}$ is also semicontinuous, we can select an $h \in S \cap X'$ such that $0 \le h \le g_2$ and $\|h\|_{X'} > A\|g_1\|_{X'}$. By Lemma 4 there exists a positive operator $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$ for which $Tg_1 \ge h$. Choose an $\varepsilon > 0$ such that $(1-\varepsilon)\|h\|_{X'} > A\|g_1\|_{X'}$. There exists a function $0 \le \tilde{f} \in X$, $\|\tilde{f}\|_X = 1$ with the property $\langle \tilde{f}, h \rangle \ge (1-\varepsilon)\|h\|_{X'}$. It follows that $(1-\varepsilon)\|h\|_{X'} \le \langle \tilde{f}, h \rangle \le \langle \tilde{f}, Tg_1 \rangle \le \|T'\tilde{f}\|_X \|g_1\|_{X'}$. Consequently, we get $\|T'\tilde{f}\|_X > A$, for the positive operator $T' \in \mathcal{B}(L^1, L^q; 1, 1)$.

Now we can state our interpolation theorem for the pair (L^1, L^q) .

THEOREM 3. Let X be a Banach function space over I with $X \subseteq L^1 + L^q$. The necessary and sufficient condition for X to have the interpolation property for the pair (L^1, L^q) , or, equivalently, this property for (L^1, L^q) in the strong sense, is that $X \in \mathcal{M}_q$.

Proof. First let $X \in \mathcal{M}_q$. By Lemma 6, $X \in \mathcal{M}_q(A)$ for some A > 0. Let $0 \neq T \in \mathcal{B}(L^1, L^q; K_1, K_q)$, we put $\alpha^{-1} = \operatorname{Max}(K_1, K_q)$. Then $\alpha T \in \mathcal{B}(L^1, L^q; 1, 1)$ and so $\alpha T f \prec_q \lambda_p f$ holds for all $f \in L^q$ by Lemma 5. Thus, $f \in L^q \cap X$ implies $T f \in X$ and $\|Tf\|_X \leq \lambda_p A \alpha^{-1} \|f\|_X$. We extend this relation to all $f \in X$. Since $f \in L^1 + L^q$, all truncations $f^{(n)}$ belong to L^q , and all differences $f - f^{(n)}$ belong to L^1 for $n = 1, 2, \ldots$. Since $\|f - f^{(n)}\| \to 0$ a.e. and $\|T(f - f^{(n)})\|_1 \leq K_1 \|f - f^{(n)}\|_1$, we have $\|Tf - Tf^{(n)}\|_1 \to 0$. Taking, if necessary, a subsequence, we can assume that the sequence $T f^{(n)}$, $n = 1, 2, \ldots$, converges a.e. to T f. By (1.2) and the semicontinuity of $\|\cdot\|_X$ we have

$$||Tf||_X \leq \liminf_{n \to \infty} ||Tf^{(n)}||_X$$

$$\leq \liminf_{n \to \infty} \lambda_p A \alpha^{-1} ||f^{(n)}||_X \leq \lambda_p A \alpha^{-1} ||f||_X.$$

This shows that $T \in \mathcal{B}(X)$, and that $||T||_X \leq \lambda_p A \alpha^{-1}$.

The necessity of the condition $\mathcal{M}_q(A)$ follows exactly as in the proof of Theorem 2.

COROLLARY 2. If
$$X \in \mathcal{M}_q(A)$$
 and $T \in \mathcal{B}(L^1, L^q; K_1, K_q)$, then $T \in \mathcal{B}(X)$ and (4.5)
$$||T||_X \leq \lambda_p A \operatorname{Max}(K_1, K_q).$$

5. Complete continuity of operators in interpolation theorems. In this section we give necessary and sufficient conditions for the space X in order that every operator T in $\mathcal{B}(L^p, L^\infty)$ (or in $\mathcal{B}(L^1, L^q)$) should be completely continuous on X if T is completely continuous on one of the spaces of the pair. We assume that $X \subset L^p + L^\infty$ (or $X \subset L^1 + L^q$) for the pair (L^p, L^∞) (respectively, (L^1, L^q)). The basic idea of the arguments below is due to the paper [4], and the setting and the proofs follow the lines of [11], [14]. The conditions are given in terms of the norms of compression operators. We denote by σ_a , a > 0, the compression operator:

(5.1)
$$\sigma_a f(t) = f(at) \quad \text{if } 0 < at < l,$$
$$= 0 \quad \text{otherwise.}$$

For any rearrangement invariant space $(X, \|\cdot\|_X)$ with $\gamma = 1$, we have $\sigma_a \in \mathcal{B}(X)$ and (see [13])

It is clear that $\sigma_{ab} = \sigma_a \sigma_b$ if $b \ge 1$, or if $0 < a, b \le 1$. It follows from this and (5.2) that

$$\|\sigma_a\|_X \le (c/a)\|\sigma_c\|_X \quad \text{if } 0 < a \le c, c > 1.$$

The norms $\|\sigma_a\|_X$, which play an important role in the theory of function spaces, have been discussed in [1], [13], [14]. We improve the inequality (3.4) of Corollary 1.

LEMMA 8. If X satisfies the condition $\mathcal{M}^p(A)$, $1 \leq p < \infty$, then, for every $0 \neq T \in \mathcal{B}(L^p, L^\infty; K_p, K_\infty)$,

$$||T||_{X} \leq A \lambda_{p} K_{\infty} ||\sigma_{a}||_{X},$$

where $a = K_{\infty}^{p} \cdot K_{n}^{-p}$.

Proof. In the assumptions of the lemma, both operators $T' = K_{\infty}^{-1} T \sigma_{a^{-1}}$ and $T'' = K_{\infty}^{-1} \sigma_{a^{-1}} T$ belong to $\mathcal{B}(L^p, L^{\infty}; 1, 1)$, as can be easily seen. If $a \ge 1$, $\sigma_{a^{-1}} \sigma_a = I$ on X, hence $T = K_{\infty} T' \sigma_a$; if 0 < a < 1, $\sigma_a \sigma_{a^{-1}} = I$ on X, hence $T = K_{\infty} \sigma_a T''$. In both cases, (5.4) follows from Corollary 1.

An operator A on the set of locally integrable functions is called an *averaging* operator if A is defined by

(5.5)
$$Af = \sum_{\nu=1}^{n} (me_{\nu})^{-1} \langle f, \chi_{e_{\nu}} \rangle \chi_{e_{\nu}},$$

where $me_{\nu} < \infty$, $e_{\nu} \cap e_{\mu} = \emptyset$, if $\nu \neq \mu$ and $n \geq 1$. For convenience, we sometimes denote the operator (5.5) by A_g , where $g = \sum_{\nu=1}^n \alpha_{\nu} \chi_{e_{\nu}}$, is any function in S corresponding to the sets e_1, \ldots, e_n . It is clear that $A_g g = g$ for all $g \in S$. An averaging operator A belongs to $\mathscr{B}(L^1, L^{\infty})$. If X is rearrangement invariant, then, because of the relation Af < f, A and I - A belong to $\mathscr{B}(X)$. Moreover, A is completely continuous. For each p, $1 \leq p < \infty$, there exists a sequence of averaging operators $A_n, n = 1, 2, \ldots$, which converges in L^p strongly to the identity operator I_n [5, p. 21]. We have

THEOREM 4. Let X satisfy $\mathcal{M}^p(A)$, $1 \leq p < \infty$. In order that every operator $T \in \mathcal{B}(L^p, L^{\infty})$, which is completely continuous on L^p , should be also completely continuous on X, it is necessary and sufficient that

$$\lim_{a\to\infty} \|\sigma_a\|_X = 0.$$

Proof. Assume that (5.6) is satisfied. The image TV of the unit ball V in L^p has compact closure in L^p . We select a sequence A_n , $n=1, 2, \ldots$, of averaging operators converging strongly to I in L^p . Then

$$\lim_{n\to\infty}\left\{\sup_{f\in V}\|(I-A_n)Tf\|_p\right\}=0,$$

hence $\lim_{n\to\infty} \|(I-A_n)T\|_p = 0$. Since $\|(I-A_n)T\|_{\infty} \le \|T\|_{\infty}$, putting $a_n = (\|(I-A_n)T\|_{\infty}\|(I-A_n)T\|_p^{-1})^p$ and $c_n = (\|T\|_{\infty}\|(I-A_n)T\|_p^{-1})^p$, we have $a_n \le c_n$ and $c_n \to \infty$. Using (5.4) and (5.3) we obtain

$$||(I-A_n)T||_X \leq A\lambda_p ||(I-A_n)T||_{\infty} ||\sigma_{a_n}||_X$$

$$\leq A\lambda_p ||T||_{\infty} ||\sigma_{c_n}||_X \to 0.$$

Since T is the uniform limit of the operators A_nT , $n=1, 2, \ldots$, which are completely continuous on X, T also has the property.

Conversely, assume that (5.6) is not valid for X. It has been shown in [14] that there exists an operator $T_0 \in \mathcal{B}(L^1, L^{\infty})$ which is completely continuous on L^1 , but fails to be so on X. Such an operator T_0 is also completely continuous on L^p , $1 \le p < \infty$ [4], [14]. Thus the necessity is proved.

If I is a finite interval, then for each operator T which is completely continuous on L^{∞} , there exists a sequence of averaging operators A_n , $n=1, 2, \ldots$, such that $\|(I-A_n)T\|_{\infty} \to 0$ [5, p. 22]. This fact can be used in the proof of the following theorem.

THEOREM 5. Let I be a finite interval, and let X satisfy $\mathcal{M}^p(A)$, $1 \le p < \infty$. In order that every $T \in \mathcal{B}(L^p, L^{\infty})$ which is completely continuous on L^{∞} should also be completely continuous on X, it is necessary and sufficient that

(5.7)
$$\lim_{a\to 0} a^{1/p} \|\sigma_a\|_X = 0.$$

Proof. The sufficiency is derived from (5.4) in a similar manner as in the proof of Theorem 4. Without loss of generality, we prove the necessity for l=1. First we note that the condition $\mathcal{M}^p(A)$ implies

(5.8)
$$a^{1/p} \| \sigma_a \|_X \leq A \quad \text{for all } a, 0 < a \leq 1.$$

This follows from the relation $a^{1/p}\sigma_a f <^p f$, $0 < a \le 1$, $f \in L^p$, which can be easily verified.

Suppose that (5.7) is not true. Then there exists a $\delta > 0$ such that for arbitrarily small a > 0, $a^{1/p} \| \sigma_a \|_X > \delta$. For each a of this kind there exists a function g, which we may assume positive, such that

(5.9)
$$g \in S; \quad \|g\|_X \leq 1; \quad a^{1/p} \|\sigma_a g\|_X > \delta.$$

We can replace g by $\chi_{(0,a)}g$, since this will not change $\sigma_a g$. Then, for $n \to \infty$ we will have $\chi_{(1/n,a)}g \uparrow g$, $\sigma_a(\chi_{(1/n,a)}g) \uparrow \sigma_a g$. From (1.2) it follows that we can assume that the functions g in (5.9) have support (c, a), 0 < c < a. In addition to (5.9) we have

$$(5.10) a^{1/2p} \|\sigma_{x/a}g\|_{X} > A^{-1}\delta,$$

since by (5.8) and (5.9)

$$\delta < a^{1/p} \|\sigma_{\sqrt{a}}\|_X \|\sigma_{\sqrt{a}}g\|_X.$$

We can select a sequence of functions g_n , with supports (c_n, a_n) , $n=1, 2, \ldots$, which satisfy (5.9) and (5.10) and for which, in addition, all intervals (c_n, a_n) , $n=1, 2, \ldots$, are disjoint, all intervals $(c_n/(a_n)^{1/2}, (a_n)^{1/2})$ are disjoint, and $\sum a_n^{1/2p} < +\infty$.

We define the operators

(5.11)
$$T = \sum_{n=1}^{\infty} T_n; \qquad T_n = a_n^{1/2p} \sigma_{(a_n)^{1/2}} A_{g_n}, \qquad n = 1, 2, \ldots,$$

where A_{g_n} are the averaging operators corresponding to the functions g_n . Then $||T_n||_{\infty} \le a_n^{1/2p}$; the T_n are completely continuous on L^{∞} . It follows that also T is completely continuous in L^{∞} .

For any f, $T_n f = T_n(f\chi_{(c_n,a_n)})$. Also, $T_n f$ has support $(c_n/(a_n)^{1/2}, (a_n)^{1/2})$. Thus, all $T_n f$ are disjoint. It is easy to see that $\|\sigma_a\|_p \le a^{-1/p}$, 0 < a < 1. From this it follows that $\|T_n\|_p \le 1$. Therefore

$$||Tf||_p^p = \sum_{n=1}^\infty ||T_n f||_p^p \le \sum_{n=1}^\infty ||f\chi_{(c_n,a_n)}||_p^p \le ||f||_p^p, \quad f \in L^p,$$

and we see that $T \in \mathcal{B}(L^p)$.

It remains to show that T is not completely continuous on X. For the sequence of functions g_n , bounded in norm in X, we have $Tg_n = T_n g_n$, and by (5.10), $||T_n g_n||_X \ge A^{-1}\delta > 0$, also $T_n g_n(t) \to 0$ everywhere. If Tg_n would have a convergent subsequence in X, it could converge only to 0, and this is impossible.

We turn now to the pair (L^1, L^q) , $1 < q < \infty$. Applying similar arguments (or considering the conjugate spaces) we obtain

LEMMA 9. If $X \in \mathcal{M}_q(A)$, $1 < q < \infty$, then, for every $0 \neq T \in \mathcal{B}(L^1, L^q; K_1, K_q)$, we have

(5.12)
$$||T||_{X} \leq \lambda_{p} A (K_{q}^{q} K_{1}^{-1})^{1/(q-1)} ||\sigma_{a}||_{X},$$

where $a = (K_q^q K_1^{-1})^{q/(q-1)}$

We also have

THEOREM 6. Let $X \in \mathcal{M}_q(A)$, $1 < q < \infty$. In order that every operator $T \in \mathcal{B}(L^1, L^q)$ which is completely continuous on L^q (or L^1) should be also completely continuous on X, it is necessary and sufficient that the following condition (5.13) (resp. (5.14)) hold:

(5.13)
$$\lim_{a\to 0} a \|\sigma_a\|_{X} = 0;$$

(5.14)
$$\lim_{a\to\infty} a^{1/q} \|\sigma_a\|_{X} = 0.$$

6. Orlicz spaces. In view of Examples 2 and 3 it appears to be worthwhile to give examples of classes of function spaces $X \in \mathcal{M}^p(1)$, $1 \le p < \infty$, for which $||T||_X \le 1$ holds for every $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$.

We consider N-functions (compare [6]) M having the expression

(6.1)
$$M(u) = \int_{0}^{u} (u-t)^{p} d\phi(t), \qquad u > 0,$$

where $1 \le p < \infty$ and ϕ is a positive nondecreasing left continuous function with $\phi(0) = 0$. For example, for r with $p \le r < \infty$, the N-function $M(u) = u^r$, u > 0, has an expression (6.1). For an N-function M, let $L_M = L_M(I)$ denote the *Orlicz space* defined by M with the norm $\|\cdot\|_M$, where,

$$||f||_M = \inf\{\xi : \rho_M(\xi^{-1}f) \le 1, \xi > 0\}$$

and

$$\rho_M(f) = \int_t M(|f(t)|) dt, \qquad f \in L_M.$$

Then we have

THEOREM 7. Let M have the expression (6.1). The Orlicz space L_M has the interpolation property for the pair (L^p, L^{∞}) in the strong sense. In addition, for every $T \in \mathcal{B}(L^p, L^{\infty}; K_p, K_{\infty})$,

$$||T||_{M} \leq \operatorname{Max}(K_{p}, K_{\infty}).$$

Proof. We may assume that $K_p = K_\infty = 1$. Let $f \in L_M$ and $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$. We have

$$\rho_{M}(Tf) = \int_{I} M(|Tf(t)|) dt = \int_{I} \left\{ \int_{0}^{|Tf(t)|} (|Tf(t)| - s)^{p} d\phi(s) \right\} dt$$

by (6.1). By Fubini's theorem this implies

$$\rho_M(Tf) = \int_0^\infty d\phi(s) \int_{\mathcal{F}} (|Tf(t)| - s)^p dt,$$

where E_s , s>0, is the set $\{t: |Tf(t)|>s, t\in I\}$. In view of the equality $(|Tf|-s\mathbf{1})\chi_{E_s}=|Tf|-|Tf|^{(s)}=|Tf-T(f)^{(s)}|$, the last term is equal to

$$\int_0^\infty d\phi(s) \int_I |Tf(t) - (Tf(t))^{(s)}|^p dt = \int_0^\infty ||Tf - (Tf)^{(s)}||_p^p d\phi(s).$$

Since $T \in \mathcal{B}(L^p, L^\infty; 1, 1)$, we get

$$||Tf - (Tf)^{(s)}||_p^p \le ||Tf - T(f^{(s)})||_p^p \le ||f - f^{(s)}||_p^p$$

which, in turn, implies $\rho_M(Tf) \le \rho_M(f)$. Consequently, on account of the fact that $||f||_M \le 1$ if and only if $\rho_M(f) \le 1$, we have $||Tf||_M \le ||f||_M$. As f is arbitrary, we obtain $||T||_M \le 1$.

In view of the proof above, we see that this theorem is also valid for Lipschitz operators acting on both L^p and L^∞ if the norms of the operators are now interpreted as their bounds. Thus, $||T||_X$ is now the smallest number γ satisfying $||Tf-Tg||_X \le \gamma ||f-g||_X$ for all $f, g \in X$. Since every N-function M has the expression (6.1) for p=1, Theorem 6 is a generalization of a theorem by W. Orlicz [13].

REFERENCES

- 1. D. W. Boyd, The Hilbert transform on rearrangement invariant spaces, Canad. J. Math. 19 (1967), 599-616. MR 35 #3383.
- 2. A. P. Calderón, Spaces between L^1 and L^{∞} and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299. MR 34 #3295.
- 3. G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge Univ. Press, New York, 1934.
- 4. M. A. Krasnosel'skii, On a theorem of M. Riesz, Dokl. Akad. Nauk SSSR 131 (1960), 246-248 = Soviet Math. Dokl. 1 (1960), 229-231. MR 22 #9852.
- 5. M. A. Krasnosel'skii et al., Integral operators in spaces of summable functions, "Nauka", Moscow, 1966. (Russian) MR 34 #6568.
- 6. M. A. Krasnosel'skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, Noordhoff, Groningen, 1961.
- 7. S. G. Krein and Ju. I. Petunin, *Scales of Banach spaces*, Uspehi Mat. Nauk **21** (1966), no. 2 (128), 89–168 = Russian Math. Surveys **21** (1966), no. 2, 85–159. MR **33** #1719.
- 8. G. G. Lorentz, Bernstein polynomials, Math. Expositions, no. 8, Univ. of Toronto Press, Toronto, 1953. MR 15, 217.
 - 9. ———, On the theory of spaces Λ , Pacific. J. Math. 1 (1951), 411–429. MR 13, 470.
- 10. G. G. Lorentz and T. Shimogaki, Interpolation theorems for operators in function spaces, J. Functional Analysis 2 (1968), 31-51. MR 41 #2423.
- 11. —, Majorants for interpolation theorems, Publ. Ramanujan Inst. No. 1 (1969), 115-122.
- 12. W. A. J. Luxemburg, Rearrangement invariant Banach function spaces, Proc. Sympos. Analysis, Queen's Univ. 10 (1967), 83-144.
- 13. W. Orlicz, On a class of operations over the space of integrable functions, Studia Math. 14 (1955), 302-309. MR 16, 834.
- 14. T. Shimogaki, On the complete continuity of operators in an interpolation theorem, J. Fac. Sci. Hokkaido Univ. Ser. I 20 (1968), 109-114. MR 39 2011.
- 15. ——, An interpolation theorem on Banach function spaces, Studia Math. 31 (1968), 233-240. MR 38 #2618.
- 16. ——, On an equivalence relation on semi-ordered linear spaces, J. Fac. Sci. Hokkaido Univ. Ser. I 18 (1964), 41-55. MR 30 #5149.

University of Texas at Austin, Austin, Texas 78712 Tokyo Institute of Technology, Tokyo, Japan